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Abstract—Biologists could make valuable use of the 

wealth of specimen information in natural history 
museum databases. “ Taxonomy via the Internet”  aims to 
build a centralized database where biologists can store, 
manipulate and retr ieve biologically meaningful data 
from images of specimens and use the data to classify the 
specimens taxonomically. The major  challenge in 
discover ing and defining new species at present lies in (a) 
the scarcity of taxonomic expertise and (b) the 
tremendous effor t involved  in taxonomic research, as 
traditionally practiced. Multimedia information 
representation provides a new computational tool for  
extracting useful features from large databases of 
specimen images and has potential to expedite the pace of 
taxonomic research. In this paper, we use a taxonomic 
problem involving species of suckers in the genus 
Carpiodes to demonstrate the utility of this method. 
Logistic regression classifier  with fully automated feature 
selection procedure is compared with the best landmark 
based classifier  to illustrate how image quality affects 
classification accuracy. We discuss the need of creating a 
multimedia database using images from fish collection.    

Keywords—taxonomy; feature selection;  logistric 
regression; shape analysis; multimedia representation 

Topic area—multimedia databases and application. 

I. INTRODUCTION 
 

Biologists have traditionally consulted field guides 
and other published works to identify species that they 
encounter in the field and to summarize what is known 
about the biology of those species.  However, these 
guides rarely contain the most update-to-date 
information on species identity, distribution and 
biology. Much of this information resides in natural 
history museums, inaccessible to most biologists.  Most 
existing information systems of natural history are 
taxonomically focused (e.g., CephBase [1], FIGIS [2], 
FishBase [3], FishNet [4], HerpNet [5], MaNIS [6], 
Ornis [7]). They are designed to give the research 
community global access to specimen information 

within the taxonomic groups involved.  However, they 
do not provide the most up-to-date information on 
species names, taxonomy and relationships.  

The job of identifying and describing new species 
and determining interrelationships of species falls on 
taxonomists and systematists. Taxonomy and 
systematics, as traditionally practiced, can be painfully 
slow.  One reason for this is that the number of 
taxonomic experts is small, especially for lesser known 
groups.  Moreover, it takes tremendous amount of time 
and effort to examine and gather data from large 
numbers of specimens across broad geographical areas, 
particularly when working in developing countries.  As 
a consequence, it is estimated that ninety percent of the 
world’s species have yet to be discovered and 
described.   The development of DNA sequencing 
technology and other molecular techniques has 
revolutionized systematics.  However, the practice of 
taxonomy is still largely based on specimens.  

Multimedia information representation provides a 
new tool for dealing with the feature extraction from 
large numbers of specimens. It also creates new 
challenges in database usage and information retrieval, 
especially where taxonomists do not provide precise 
rules for multimedia-based recognition systems. In fact, 
most of the existing taxonomic databases contain only 
text and very few contain images directly digitized 
from the specimens. Taxonomists rarely rely on image 
processing and machine learning techniques to identify 
distinct features of species or for understanding 
relationships among species. On the other hand, 
computer scientists routinely deal with data mining and 
feature selection for classifying images from large 
databases. Thus, multimedia information may be 
particularly relevant to the process of taxonomic 
revision and new species discovery. In this paper, we 
use multimedia information derived from images of 
specimens to resolve a taxonomic problem in the fish 
genus Carpiodes, with and without expert knowledge 
of the body shape. More specifically, we compare the 
classification accuracy between a logistic regression 
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classifier with fully automated feature selection and the 
best landmark based classifier used in another study 
[14]. We illustrate how image quality affects the 
feature selection and classification accuracy and argue 
that the 2D body shape of a specimen may be 
inadequate to identify and formally describe the 
unrecognized species. Finally, we discuss the 
construction of 3D models to represent specimens and 
some of the consequences of using these models in 
database management.   
 

II. CARPIODES SPECIES COMPLEXES 
OVERVIEW 

 
The genus of Carpiodes, as currently recognized, 

comprises three widely distributed species: the 
quillback Carpiodes cyprinus, the river carpsucker 
Carpiodes carpio, and the highfin carpsucker 
Carpiodes velifer1.  Fig. 1 shows representative images 
of the three species and corresponding specimens. 
Taxonomists have long suspected that genus Carpiodes 
is more diverse than presently recognized and that each 
of the current species is a complex of multiple species 
in need of revision.   

The classification of a specimen sample into one of 
the three species relies on the domain knowledge of the 
body features as summarized in Tab. 1 [12]. Computer 
technology has enabled the development of 
morphometric techniques to analyze the variation in 
body shape systematically using biologically definable 
measures, i.e., homologous landmarks, along the body 
outline [9]. Fig. 2 shows the positions of 15 landmarks 
digitized on a Carpiodes specimen using TpsDIG 
software [11]. Feature variables were derived from the 
2D coordinates of these 15 landmarks using canonical 
variate analysis [12] and other feature selection 
methods. An important question is whether the three 
Carpiodes species complexes can be distinguished 
based on the body shape, i.e., a small set of selected 
features derived from the landmarks [14]. 

 

 
(a) Quillback Carpiodes cyprinus (C. cyprinus) 

 
(b) River carpsucker Carpiodes carpio (C. carpio) 

                                                           
1
http://www.funet.fi/pub/sci/bio/life/pisces/actinopterygii/cyprinifor

mes/catostomoidea/catostomidae/ictiobinae/carpiodes/ 

    
(c) Highfin riversucker Carpiodes velifer (C. velifer) 

Fig. 1. Three species of Carpiodes [12] 

 
Table1. Distinct body characteristics of the three species  

 head body snout lip nipple 
C. cyprinus large elongate long no 
C. carpio large elongate short yes 
C. velifer small short/deep short yes 

 
Fig. 2. A specimen with 15 landmarks made by domain experts [11] 

 
III. JOINT FEATURE SELECTION AND 

CLASSIFICATION FOR CARPIODES SPECIES 
 
A. The Taxonomic Problem 
 

Shape analysis has been used to characterize 
variation in body proportions among Carpiodes 
populations across broad geographic areas [12]. 
However, the use of mophometric techniques alone can 
generate misleading results. Populations of Carpiodes 
in the Rio Grande and upper Colorado River in Texas 
have traditionally been identified as C. carpio. 
However, a recent DNA sequence analysis suggests 
that these populations have close affinities to C. 
cyprinus [12]. In [14], landmarked images of 650 
Carpiodes specimens from Tulane Museum of Natural 
History (TUMNH) Fish Collection were used to 
identify features diagnostic for the 53 Carpiodes 
specimens from the Rio Grande and upper Colorado 
River. Over 50% of the specimens were correctly 
diagnosed as C. cyprinus based on two statistically 
significant feature variables, which is consistent with 
DNA sequence results [12]. However, several 
important issues still need to be addressed. First, 
putting 15 landmarks on 2D images of 650 specimens 
is a laborious task. A complete analysis of Carpiodes 
specimens in the TUMNH Fish Collection alone would 
involve digitizing landmarks on over 20,000 Carpiodes 
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specimens. Second, the features used to diagnose 
Carpiodes specimens from the Rio Grande and upper 
Colorado River are different from those used in visual 
determination by a domain expert. The main character 
used in [12] to differentiate Rio Grande and upper 
Colorado River Carpiodes specimens from C. carpio 
was the absence of a lower lip nipple, which could not 
be derived from landmark data. One may question 
whether a 2D digital image of a specimen is adequate 
to diagnose the body shape differences when fish are 
3D in actuality. Third, what does it mean biologically if 
the classifier fails to place most of the undetermined 
specimens into one of the known species? Is this a 
strong indication that the specimens in a group need to 
be considered as a new species? 

 
B. Feature Selection with Controlled False Discovery 
Rate  

 
To address the first question, we compare feature 

selection with and without landmark information. 
Without loss of generality, we denote ix  as feature 

vector of the i-th specimen which can be obtained 
either through the 2D coordinates of the landmarks or 
directly from the 2D image. The number of features is 
usually large and may not all be useful for 
classification purposes. In fact, some features are 
highly correlated and the experimental study in [14] 
showed that as few as two good features can yield 
fairly accurate classification results for a 1-norm 
support vector classifier. Feature selection can also be 
viewed as a multiple hypothesis testing problem. 
Assume the number of features is d and a hypothesis 

kH  corresponds to the selected index set 

},...,1{ dI k ⊆ . One needs to find the best hypothesis to 

separate the known species. The number of hypothesis 
grows exponentially in d. One viable solution is to 
select the subset of features with a controlled false 
discovery rate (FDR) [13]. The procedure requires to 
have test statistics 1T , …, dT for all features with the 

associated p-values indicating the statistical 
significance. Then for any user specified FDR 

)1,0(∈q , the feature selection is carried out by the 

following steps [13]: 
• Order the p-values such that )()1( ... dpp ≤≤ . 

• Compute the index }/|max{ )( diqpik i ≤= . 

• Select k features corresponding to the ordered 
p-values )()1( ,..., kpp . 

The scheme is very efficient and has many good 
theoretical properties when q is chosen to be very small 
[8]. 

The difficulty of obtaining an accurate p-value for 
each feature lies in that the sample size of the known 
species is fairly small compared with the number of 
candidate features. We use logistic regression to tackle 
the feature selection and classification problem jointly. 
Details can be found in [14].  

 
C. Logistic Regression Classifier 
 

Logistic regression classifier (LRC) is a 
computationally efficient algorithm to handle a large 
number of feature variables [16]. For simplicity, we 
consider a binary classification problem with the 
following assumed statistical model. 

)1/(1),|1( i
T

eyP ii
xwwx −+==  

where w is the regression coefficient vector to be 
estimated from the training samples. The log-likelihood 
of N independent training samples is given by 

{ }�
=

+−=
N

i
i

T
i

i
T

eyL
1

)1log()( xwxww . An efficient 

algorithm to obtain the maximum likelihood estimate of 
w is through iteratively re-weighted least squares 
method [16]. The p-value for each component of w can 
also be obtained conditioned on the hypothesis that it is 
zero. Thus feature selection can be directly applied to 
the above logistic regression classifier.  

 
Fig. 3. Best classification tree for genus Carpiodes  [14] 

 
For the multiple class case, we build a classification 

tree using logistic regression as the binary classifier 
and select the tree with the best classification accuracy 
using all training samples. With landmark information, 
the best hierarchical tree structure is shown in Fig. 3 
where the 53 undetermined specimens are not used 
[14]. The leading feature used by the logistic regression 
classifier is the distance between the naris and the tip of 
the snout in proportion to the distance between the 
naris and the eye which is related to the size and shape 
of the head. The best feature for diagnosing C. cyprinus 
from C. carpio is the slope of the line connecting the 
naris and the back of the mouth, which is related to the 
size of the head relative to the size and position of the 
mouth. The two species are otherwise similar in overall 
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body shape.  Another feature that unites C. carpio with 
C. velifer, but distinguishes it from C. cyprinus is the 
presence of a lip nipple. However, this character can 
not be seen in 2D images based on the side views of the 
specimens.  Thus, classification accuracy of specimens 
of C. carpio and C. cyprinus is worse than that of the 
first level of the classification tree.  

  
D. Feature Selection without Using Landmarks 

 
Image based object recognition is a challenging 

research problem in its own right. Here we try to find 
useful features from the edge enhanced and normalized 
grey image based on the detected saliency regions [18]. 
A saliency region indicates high complexity of signal 
intensity measured by the entropy. The saliency region 
detector works as follows. For each pixel location, a 
probability density function (PDF) of the signal in a 
circular region of radius (scale) s is estimated. The 
signal is the intensity value of the equalized grey scale 
image. The PDF is approximated by a signal histogram 
computed over a circular region. Then the entropy, 
H(s), is calculated for each scale. Those scales at which 
H(s) is a maximum are chosen to be candidate scales. 
The saliency of each candidate is evaluated using a 
measure of the self-dissimilarity in the scale-space [21]. 
Regions with saliency value greater than a threshold are 
selected as the salient regions. Each salient region is 
defined by its center and the radius. The salient regions 
are used as the candidate feature variables for the 
logistic regression classifier with an FDR controlled 
feature selection procedure. Since it is computationally 
expensive to find the saliency regions for a high 
resolution image, we also consider an edge detection 
based method to lower the image quality with coarse 
quantization on the level of grey scales. We used a 
Sobel operator [15] with an increasing threshold �  to 
keep only the strong edges of the image and then 
applied the saliency region detector to the compressed 
image. An example of the compressed low quality 
images of three specimens is shown in Fig. 4 with 

� =0.02.   
We compare the classification accuracy with the 

best landmark based classifier presented in [14] using 
the training samples of 297 C. cyprinus specimens, 128 
C. carpio specimens, 172 C. velifer specimens and the 
test samples of 53 specimens from the Rio Grande and 
upper Colorado River. The results for separating C. 
velifer from C, carpio and C. cyprinus are listed in 
Tab. 2. We can see that the saliency based classifier 
achieves comparable accuracy to the landmark based 
classifier with no undetermined specimens being 
misdiagnosed as C. velifer. As the threshold increases, 

the image quality declines and consequently the 
classification error increases. This is also evidenced 
from Fig. 4 where the classification by visual 
examination from a domain expert is challenging 
without knowing the species of each image.  

 
   

 
(a) edge enhanced specimen image (C. cyprinus) 

 
(b) edge enhanced specimen image (C. carpio) 

 
(c) edge enhanced specimen image (C. velifer) 

Fig. 4. Three Specimens of Carpiodes with Edge Enhanced 
Image Compression 

 
Table 2. Separating velifer from cyprinus and carpio: 

landmark based classifier vs. saliency region based classifier 
algorithm training error testing error 
LRC/landmark  5.5% 0% 
LRC/� =0.001 5.7% 0% 
LRC/� =0.005 6.7% 1.9% 
LRC/� =0.02 10.7% 9.4% 
 
Next, we compare the classification accuracy for 

separating C. cyprinus from C. carpio. The results are 
listed in Tab. 3. Again, the saliency based classifier 
achieves comparable accuracy in training and both 
classifiers put most of the undetermined specimens into 
C. cyprinus, which is a strong indication that the 
undetermined specimens do not belong to C. carpio. 
Interestingly, as the image quality declines, more 
specimens are classified as C. carpio. This is mainly 
because the edge enhancement preserves the overall 
shape information which alone diagnoses the 
specimens as C. carpio incorrectly (see [14] for 
details). The results indicate that the FDR controlled 
feature selection for a logistic regression classifier 
performs equally well even without landmark 
information although the computational load is much 
more expensive without doing image compression.  
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Table 3. Separating C. cyprinus from C. carpio: landmark 
based classifier vs. saliency region based classifier 

algorithm training error testing  
LRC/landmark  8.0% 22.6% 
LRC/� =0.001 5.2% 39.6% 
LRC/� =0.005 13.2% 45.3% 
LRC/� =0.02 17.4% 54.7% 

 
E. Statistical Significance Test for New Species 
Diagnosis 
 

In diagnosing the 53 undetermined specimens, the 
classifiers using landmarks or saliency regions can not 
put the majority of the specimens into one of the known 
species, which is a strong indication for the domain 
expert to perform further diagnosis in order to resolve 
the taxonomy. We randomly pick 53 specimens from 
C. cyprinus and use the remaining samples to train the 
classifiers. The significance test results are listed in 
Tab. 4 where we can see that both classifiers with and 
without landmark information yield reasonably large p-
values so that the hypothesis that the testing specimens 
belong to cyprinus should not be rejected. Note that as 
the image quality reduces, the classification error 
increases and one observes small p-values which may 
generate false diagnosis. Thus caution has to be 
exercised when choosing a threshold of the p-value 
especially for large training error. 

 
Table 4. Significance test: landmark based classifier vs. 

saliency region based classifier 
algorithm training error testing (p-value) 
LRC/landmark  6.2% 0.13 
LRC/� =0.001 5.7% 0.17 
LRC/� =0.005 9.5% 0.02 
LRC/� =0.02 16.9% 0.008 

 
IV. TOWARD 3D SHAPE ANALYSIS 
 

Currently recognized species of Carpiodes are 
mainly based on body shape characteristics and it 
seems that machine learning techniques can provide 
informative diagnosis with 2D images of the 
specimens. However, the selected features are difficult 
to measure and hard to interpret, which makes 
classification results questionable. In fact, some distinct 
features can not be identified from the 2D image of the 
specimen but are useful for diagnostic purposes. For 
example, it has long been known that breeding 
tuberculation patterns can be used to diagnose 
Carpiodes species (see Fig. 5 [17]). However, the 
pattern must be assessed from dorsal and ventral, as 
well as lateral views of specimens. These views are 
unavailable in a lateral 2D image. The same is true on 

the lip nipple character (visible only in ventral view) 
that distinguishes C. carpio and C. velifer from C. 
cyprinus. For these characters and to properly represent 
the depth dimension, it would be more accurate and 
appropriate to have multiple views of each specimen or 
to create 3D visualization based on these images, and 
make them accessible through the Internet. One 
possible way to visualize 3D shape is to use skeletons 
as a descriptor of the shape. The general idea is to 
derive 1D skeletal curves from a 3D object such that 
each curve represents a significant part of the object. 
These curves are then converted into an attributed 
graph representation called a skeletal graph [22]. It can 
then be used for indexing, matching, correspondence 
finding and other semantic queries.  

 

 
(a) cyprinus: larger tubercles concentrated on the 

cheek and opercle 

 
(b) carpio: tuberculation apparently weak 

 
(c) velifer: tubercles concentrated on the snout and 

top of head 
Fig. 5. Breeding tuberculation pattern of Carpiodes [17] 

 
V. SHAPE-BASED INFORMATION RETRIEVAL 
 

As we have seen, the 2D image-based specimen 
representation may not be adequate for species 
diagnosis especially when the views of important 
diagnostic feature are missing. The problem with using 
3D models for each specimen is that the database 
management and information retrieval techniques need 
to be developed in accordance with these models. The 
key issue in developing a shape-based information 
retrieval and analysis system is to find a shape 
descriptor for which an index can be built; similarity 
queries can be answered efficiently so that feature 
selection and classification can be implemented similar 
to the 2D case. One possible solution is to construct a 
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shape distribution sampled from a particular function 
measuring the geometric properties of a 3D model. A 
set of functions have been proposed such as reflective 
symmetry descriptor [19] and spherical harmonics [20]. 
Features derived from the shape descriptor can have 
better discriminative capability for species diagnosis. 
One important issue for building taxonomic trees based 
on 3D specimen samples is how to organize the 
database to support shape-based user queries. The 
simplest query interface is to search for 3D objects 
based on textual keywords. A more advanced 
requirement is to support shape-based queries such that 
shape similarity can be used for taxonomic purposes, 
enabling taxonomists to easily obtain the 3D 
information of a specimen online. Such a search engine 
has been developed in Princeton Shape Benchmark 
[24] with a significant number of users. 

 
VI. CONCLUSIONS AND FUTURE WORK 
 
In this paper, we compared the classification accuracy 
for a logistic regression classifier using false discovery 
rate controlled feature selection with and without 
landmark information using a taxonomic problem in 
the genus Carpiodes. We found that classification 
without landmark information, albeit computationally 
more expensive, has comparable performance to that 
using landmarks. The classification accuracy degrades 
as we reduce the image quality by preserving only 
strong edges, which indicates the importance of local 
shapes for diagnostic purposes. To properly visualize 
specimens and a more complete set of diagnostic 
features, we propose the use of 3D shape models to 
characterize each specimen and discuss its impact on 
the feature selection and classification algorithm used 
for the 2D images. Finally, we briefly highlighted the 
representation of 3D objects and the impact on 
database management and information retrieval. 

There are many avenues for future work. The logical 
next step is to build 3D models of specimens and test 
the accuracy of species diagnosis. The results should be 
compared with those obtained using 2D images to 
identify the important views of a 3D specimen for 
taxonomic problems. Another important direction is to 
design a database system for the 3D images that allows 
users to search and mine specimens via the Internet. 
Efforts are underway to build virtual natural history 
cyber-laboratories, thereby accelerating the rate of new 
species discovery [23].  
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